
JCAMP-MOL: A JCAMP-DX extension to allow interactive
model/spectrum exploration using Jmol and JSpecView

Specification Draft 4/1/2012

Robert M. Hanson hansonr@stolaf.edu

Robert J. Lancashire robert.lancashire@uwimona.edu.jm

draft modified 4/1/2012 -- xUnits, yUnits removed from <Peaks>; yMin, yMax removed from
<PeakData>

for discussion

This specification describes a simple extension to the JCAMP-DX format using two user-
defined-data-labels, ##$MODELS and ##$PEAKS, to add 3D Jmol-readable models to the
file and also associate spectral bands with specific IR and RAMAN vibrations, MS fragments,
and NMR signals. It can be applied to any sort of JCAMP-DX files, especially BLOCK files that
contain multiple spectra of diverse types, but also simple JCAMP-DX files and files containing
NTUPLE data such as 2D NMR data or real/complex (phasable) 1D NMR data.

The purpose of the JCAMP-MOL is to allow for a single file that can be read either by the stand-
alone Jmol application (which now incorporates JSpecView) or by twin Jmol and JSpecView
applets on a web page. Clicking on an atom or selecting an IR/RAMAN vibration in Jmol
highlights a band or peak or fragment on the spectrum. Clicking on the spectrum highlights one
or more atoms, starts an IR vibration, or displays an MS fragment in Jmol.

mailto:hansonr@stolaf.edu
mailto:hansonr@stolaf.edu
mailto:hansonr@stolaf.edu
mailto:hansonr@stolaf.edu
mailto:hansonr@stolaf.edu
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm
mailto:robert.lancashire@uwimona.edu.jm

The specification was implemented fully in Jmol 12.2.18 during February and March of 2012,
and it works smoothly and flawlessly. Several demonstration sites are available:

 http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview

 http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample

Data can be either real spectrometer data or simulated spectra. Especially with simulated
spectra, there is huge potential for this format. It would be almost trivial to implement by web-
based spectral prediction server developers in particular. The idea is to incorporate an API that
allows Jmol to POST to the site a 3D MOL file and be returned a JCAMP-MOL file. With Jmol
12’s ability to interface with the NCI CACTUS site, which can generate an uncountable number
of organic compounds from a name, the potential is there to generate simulated spectra on the
fly with interactive correlation to a 3D model on a web page.

The specification is simple enough that this sort of automated API should be able to be
implemented very easily by server developers.

The added ##$MODELS records generally contain one MOL file (for NMR) or, for IR or RAMAN,
a multi-model XYZ file with vibration information with an optionally associated MOL file that
specifies bonding, or for MS a set of MOL files, one for each fragment.

The added ##$PEAKS records simply indicate which bands on a spectrum correlate with which
models (IR, RAMAN, MS) or model atoms (NMR) in the ##$MODELS record(s).

Detailed specifications follow, with examples:

1a) There can be any number of ##$MODELS records in a JCAMP-MOL file.

1b) There can be at most one ##$PEAKS record per spectrum.

2) ##$MODELS and ##$PEAKS records take the form of simple XML data and may appear
anywhere after the ##DATA_TYPE record of a block. These records contain line-formatted
XML data that is listed using <Xxxx> and </Xxxx> tags on lines by themselves and <Xxxx … />
tags on single lines by themselves.

##$MODELS

##$MODELS=
<Models>
 <ModelData id="acetophenone" type="MOL">
acetophenone
 DSViewer 3D 0

 17 17 0 0 0 0 0 0 0 0999 V2000
 -1.6931 0.0078 0.0000 C 0 0 0 0 0 0 0 0 0 1
...

http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample
http://wwwchem.uwimona.edu.jm/spectra/JSpecView2/sample

M END
 </ModelData>
 <ModelData id="1" type="XYZVIB" baseModel="acetophenone" vibrationScale=".1">
17
1 Energy: -1454.38826 Freq: 3199.35852
C -1.693100 0.007800 0.000000 -0.000980 0.000120 0.000000
...
17
2 Energy: -1454.38826 Freq: 3191.02824
C -1.693100 0.007800 0.000000 -0.000020 -0.000100 0.000000
...
 </ModelData>
</Models>

3) Each ##$MODELS record must have exactly one <Models> element. This element may start
on the ##$MODELS line, but stylistically is better placed on the next line.

4) Each <Models> element may include any number of <ModelData> elements. Actual model
file data is contained in the <ModelData> element, starting always with the next line. This data is
line-based until the closing </ModelData> tag.

5) Each <ModelData> element must have an id attribute, which is used to identify this model
within the file. Optional additional attributes include:

 type (the format of the model data, such as XYZ or MOL; default is to let Jmol decide the type,

baseModel (a reference to a ModelData id used by Jmol only for assigning bonds for XYZ file
data), and

vibrationScale (used by Jmol to adjust the vibration scale, usually to smaller magnitudes --
vibrationScale=”0.1” -- than what is in the XYZ file itself).

6) Acceptable model types include any Jmol-readable file format, including for example, MOL,
MOL2, PDB, CIF, and XYZ (aka XYZVIB). Any non-binary output type readable by Jmol is
acceptable, including full Gaussian output log files or Web-MO models, with orbitals.

7) Generally no two models in a JCAMP-MOL file should have the same id. If they do, Jmol will
read only the first and will ignore the second. This is fine as long as the model is the same -- no
error is thrown. So, for example, having independent models in NMR and IR sections both with
id="acetophenone" is fine, because we don't need two copies of that file loaded by Jmol. Only
the first will be loaded.

8) A model may be implicitly “global” (referenced by ##$PEAKS record in more than one block),
or implicitly “local” (referenced only by the ##$PEAKS record of the block containing the model.
Jmol does not care whether a model is global or local. The peaks assignments are correlated
with models only after all models and peaks have been read.

9) If two spectrum blocks (for example, HNMR and CNMR) use the same model, they should
indicate that with the same model attribute in the ##$PEAKS section.

10) If blocks are to be totally independent (author’s choice), then each block needs to have
unique model id values, provided the models are different.

11) Alternatively, all the models could be up front in a LINK block or first data block, and data
blocks can then all refer to that set of models.

12) When there is a <ModelData> record with multiple molecular models within it (for instance
a set of IR vibrations in an XYZVIB file format or a set of MS fragments in a multi-model SDF
format), then these models are identified by added extensions .1, .2, .3, etc. For example, if the
model id is “acetone”, then individual vibrations are referenced as “acetone.1” “acetone.2” etc.

13) It is perfectly fine if some numbered models are not referred to in ##$PEAKS records. Upon
loading a file, Jmol will ignore any unreferenced models that have "." in their id. For example,
an XYZVIB file has 45 models, but only 22 are assigned. So the unused 23 models are never
loaded. The remaining models are numbered sequentially prior to removal of unused models,
so in the end we might only have models “aspirin.1” “aspirin.5” “aspirin.11” etc., with missing
numbers.

##$PEAKS

##$PEAKS=
<Peaks type="IR">
<PeakData id="1" title="asymm stretch of aromatic CH group (~3100 cm-1)" peakShape="broad" model="1.1" xMax="3121"
xMin="3081" />
<PeakData id="2" title="symm stretch of aromatic CH group (~3085 cm-1)" peakShape="broad" model="1.2" xMax="3101"
xMin="3071" />
<PeakData id="3" title="asymm stretch of CH group (~3060 cm-1)" peakShape="broad" model="1.3" xMax="3077" xMin="3047" />
…
</Peaks>

14) ##$PEAKS records contain exactly one <Peaks> element. The <Peaks> tag must
have at least the attribute type. type is an author-defined descriptor, for example: “HNMR”
or “13CNMR” or “GC/MS” or “MS” or “IR” or “DEPT-45”. Additional attributes include xLabel and
yLabel, which indicate the x- and y-scale labels and override ##XLABEL and ##YLABEL (which
themselves override ##XUNITS and ##YUNITS).

15) Each <Peaks> element may contain any number of <PeakData.../> tag, one per line. The
<PeakData.../> tag attributes specify the correlation between spectrum positions and models
and (possibly) specific atoms in those models.

<PeakData id="1" title="methyl group ~2.6" peakShape="singlet" model="acetophenone" atoms="15,16,17" xMax="2.7" xMin="2.5"
/>

16) Jmol/JSpecView specifically use the attributes title, model, atoms, xMin, and xMax. All
others are currently ignored.

title a phrase to be associated with this model or group of atoms
model a model id
atoms particularly for NMR, the atoms (1-based numbering) associated with this

signal. (See example below)
xMin low value for range on spectrum. Units are specified in the <Peaks> tag and

should be the same as given for ##XUNITS in the data.
xMax high value for range on spectrum. Units are specified in the <Peaks> tag and

should be the same as given for ##XUNITS in the data.

17) Jmol and JSpecView will add three attributes to the beginning of this tag: file, index, and

type, when communicating. These names are reserved names and should not be used by the
author of the JCAMP-DX file. They are, respectively, the file path or URL of the source file, a
1-based serial index of the <PeakData.../> tag in the file, and the type attribute from the Peaks
tag.

<end of specification>

Intra-Application Communication

Jmol (and any Java application incorporating Jmol) fully incorporates JSpecView starting
with Jmol 12.3.18. JSpecView can be opened independently from the Tools menu using
the command sync JSpecView. In addition, JSpecView will be opened automatically if Jmol
has read a JCAMP-MOL file of this sort and has been given and the user navigates to an IR
vibration or MS fragment model or clicks on an atom having an associated peak in the NMR
spectrum. The sync command can also be used to send commands to JSpecView. For
instance, sync JSpecView: load c:/temp/t.jdx.

A command starting with hidden true;... will execute in JSpecView without bringing up the
JSpecView window. This allows Jmol scripts direct behind-the-scenes access to spectroscopic
data by selecting specific spectra and, for example, integrating spectra.

Starting with Jmol 12.3.18, Jmol’s getProperty command and getProperty() function are
extended to obtain information from JSpecView (application only). Thus, getProperty
JSpecView gets a large list of data relating to currently open spectra, and

 print getProperty(“JSpecView”)[“items”][1][“spectra”][1][“header”][“##title”]

selects out a piece of that larger corpus. A more efficient way of getting this selective
information is by indicating the key of interest in the getProperty command:

 print getProperty(“JSpecView”, “##TITLE”)[“items”][1][“spectra”][1][“header”][“##title”]

In this case, JSpecView does not compile the entire set of parameters, but instead looks for that
specific key in the header (of all spectra).

Clicking on an identified peak on any spectrum in the JSpecView window will load the specified
model into Jmol and highlight it. If another model is already loaded in Jmol, it will be replaced.
The spectrum can also be navigated using the left- and right-arrow keys of the keyboard.

Applet-Applet Communication

 http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html

The Jmol and JSpecView applets will communicate via Jmol’s SYNC command, sending to
each other the complete <PeakData.../> tag (including added file, index, and type attributes)
preceded with “Select: “ in the case of JSpecView-->Jmol and “XXXX__yyyy__JSpecView:” in
the case of Jmol-->JSpecView. (The designation “XXXX__yyyy__” here is the full applet name
for a Jmol applet, including its standard name attribute, two underscore characters, its pseudo-
random syncID, and two underscores. For example: jmolApplet0__2938373623__).

The web page developer needs to include SYNC ON; SET SYNCCALLBACK “xxxxx” in
Jmol and SET SYNCCALLBACKFUNCTIONNAME xxxxx in JSpecView, where xxxxx is
a JavaScript callback function name. This JavaScript function is responsible for receiving
the <PeakData.../> tag information (as the second parameter) and passing that along to
the appropriate JSpecView or Jmol applet using that applet’s public syncScript() method,
possibly by checking the type attribute to determine where to route the sync request.
AppletReadyCallbacks are also recommended, since the two applets will load simultaneously,
and it is important that both be fully loaded prior to initiation of communication. Sample code is
on the next page.

http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html
http://chemapps.stolaf.edu/jmol/docs/examples-12/jspecview/test1.html

Note that the following code is using functionality provided by JSVfunctions.js and Jmol.js.

<javascript>
haveJmol = false
haveJsv = false

function readyCallback(app, msg, isReady) {
 if (!isReady)return
 if (app.indexOf("jmolApplet") == 0)
 haveJmol = true
 else
 haveJsv = true
}

function mySyncCallback(app,msg) {
 var toJmol = (haveJmol && msg.indexOf("Select:") == 0)
 var toJsv = (haveJsv && msg.indexOf("JSpecView:") >= 0)
 if (!toJmol && !toJsv) return 1 // some other sort of sync, or not ready
 _jmolFindApplet(toJmol ? "jmolApplet0" : "JSVApplet").syncScript(msg)
 return 0 // prevents further Jmol sync processing
}

</javascript>

And later in the file, to create the JSpecView and Jmol applets:

<javascript>
 jsvls="appletreadycallbackfunctionname readyCallback;synccallbackfunctionname mySyncCallback;load t6.jdx;";
 insertJSVObject("../jspecview.jar","JSVApplet","600","400",jsvls);

</javascript>

 <javascript>

_jms= "load t6.jdx;background white; vibration off; vectors off;sync on";
 jmolSetCallback("syncCallback", "mySyncCallback");
 jmolSetCallback("appletReadyCallback", "readyCallback");

 jmolApplet(300,_jms,"0");
</javascript>

In conclusion, we have developed a simple method of specifying spectral-model correlations.
The method allows reading of a single file by either Jmol or JSpecView and, with a bit of
additional JavaScript on a web page, allowing interactive investigation of a molecule and its
associated spectral data.

Some sample screenshots:
Cholesteryl acetate 13C NMR

cis- and trans-1,2-dichloroethylene study with IR and Raman spectra

H NMR of ethylsalicylate (with integration feature)

For devices that can make use of HTML5 and not Java, it is possible to
use JSpecView to export a SVG document that can be inserted into a web
page.

